Protective role of microRNA-219-5p inhibitor against spinal cord injury via liver receptor homolog-1/Wnt/β-catenin signaling pathway regulation.

نویسندگان

  • Jie Li
  • Liqiang Li
  • Yong Shen
چکیده

The present study aimed to investigate the role of microRNA (miR)-219-5p in spinal cord injury (SCI) and to examine the underlying molecular mechanism. SCI rat and cell models were conducted in the current study, while reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the level of miR-219-5p in the SCI mice and neurons. Bioinformatics analysis was applied to predict the target genes of miR-219-5p, and dual-luciferase reporter assay was performed to verify the prediction. In addition, MTT assay and flow cytometry were conducted to determine the cell viability and cell apoptosis of the neurons, respectively. Western blot analysis was also performed to detect the expression of associated proteins. The study results demonstrated that miR-219-5p was highly expressed in SCI mice and neurons, and directly targets liver receptor homolog-1 (LRH-1). The neuron viability was significantly reduced by SCI, however, it was recovered upon transfection with an miR-219-5p inhibitor. Neuron apoptosis was notably induced by SCI and inhibited by miR-219-5p inhibition. The LRH-1/Wnt/β-catenin signaling pathway was also inhibited by SCI, while it was significantly enhanced by the miR-219-5p inhibitor. Furthermore, LRH-1 overexpression eliminated the effects of the miR-219-5p inhibitor on SCI. In conclusion, these data indicated that the miR-219-5p inhibitor served a protective role in SCI via regulating the LRH-1/Wnt/β-catenin signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β‐catenin signaling pathway after spinal cord injury

Statins exhibit neuroprotective effects after spinal cord injury (SCI). However, the molecular mechanism underlying these effects remains unknown. This study demonstrates that the hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin (Simv) exhibits neuroprotective effects on neuronal apoptosis and supports functional recovery in a rat SCI model by activating the Wnt/β-catenin signal...

متن کامل

Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/β-catenin signaling pathway

The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guidance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord injury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluoresc...

متن کامل

The protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway

Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway.Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group...

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental and therapeutic medicine

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2018